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Abstract—This article proposes a demand-side management
(DSM) mechanism for energy management based on user behavior
monitoring in a smart home. In the proposed mechanism, first
through an analytic hierarchy process, the most influential factors
related to power consumption are extracted. Next, by employing the
K-means algorithm on the extracted factors, users are clustered.
The user’s clusters, the power grid state, and the user’s real-time
power consumption are inputs for a control unit. We present an
interactive algorithm for the control unit, which causes peak reduc-
tion using peak clipping techniques. We also develop a day-ahead
scheduling mechanism, which optimizes the load based on load
shifting techniques. The proposed system is implemented in an
Internet of Things (IoT) testbed consisting of four tiers—sensors,
home gateways, server, and web portal. The central server is based
on the Kaa IoT platform, an open-source platform widely used
in the IoT domain. The performance of the proposed system is
evaluated through simulation and a case study. Results confirm
that the proposed system reduces the power consumption and costs
for users and improves power grid performance in terms of the
peak-to-average ratio.

Index Terms—Demand response (DR), demand-side
management (DSM), Internet of Energy (IoE), Internet of
Things (IoT), optimization, smart home.

I. INTRODUCTION

IN RECENT years, by the growth of the Internet of Things
(IoT) and digital technologies, the smart grid has been be-

coming more mature. The smart grid is involved in the electric
power system of power generation, transmission, substation, and
power distribution or utilization [1]. Internet of Energy (IoE)
is a subset of IoT, which covers all aspects of the electrical
energy system to provide secure connectivity and interoperabil-
ity between the smart grid and the Internet [2]. Concerning
power consumption, demand and supply are important issues
that should be considered. To utilize the total demand with the
amount of supply, demand response (DR) has emerged. DR
refers controlling loads and embedded generation as a response
to electricity prices [3]. In DR programs, utility companies offer
customers credit for reducing electricity consumption for spec-
ified periods. DR applications control the load, therefore, not
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only do they make customers reduce their power consumption
depending on the energy price, but also help power supply
authorities to manage the smart grid better.

By utilizing DR approaches, it is possible to reduce or shift
energy consumption from peak hours to nonpeak hours (i.e.,
the period of less demand). To achieve this goal, customers
can decide to disconnect nonessential loads at peak hours
[3]. To ensure the supply and demand balance in real time,
demand-side management (DSM) approaches are utilized. DSM
encompasses mechanisms to optimize consumers’ demand for
electrical energy by encouraging the customer to use less en-
ergy [4]. Applying DSM increases financial benefits and boosts
the quality of energy services [5]. For efficient DR programs,
especially DSM programs, energy consumption and generation
information should be tracked in real time. Therefore, we need
to measure and monitor the required information remotely. As
described in [6], IoT can be used to furnish the intelligent man-
agement of energy distribution and consumption under different
circumstances. Hence, the power grid needs to be implemented
in a distributed topology that can dynamically absorb various
energy sources [2]. There has been extensive research focusing
on developing smart environments equipped with smart meters
and smart plugs [7]. In the current study, we have used these
smart meters, sensors, and actuators to make smart homes.
Time-of-use (ToU) pricing is usually applied by utility com-
panies, which means electricity during peak hours costs more
than off-peak hours. During peak hours, the demands of the
customers rise, and the utility companies may have to supply
additional power. Providing extra power has higher operating
costs and greenhouse gas (GHG) emission rates. Therefore, we
need some strategies to reduce the power consumption of the
network during peak hours based on the current power supplies.
Reducing peak load decreases the energy generation expenses
and the GHG emissions [8].

Regarding energy consumption during peak hours, occupant
energy consumption behavior is the major contributor to the
variance in domestic energy consumption [9]. There has been
extensive research on energy behavior, with the main concen-
tration on the residential sector, aiming at establishing behavior
determinants and the best strategies to promote more efficient
energy behaviors [10]. To this end, homes are equipped with
smart meters and sensors to collect consumption behavior data.
Then, data are transferred to the central IoT cloud platform
to be analyzed and managed [11]. There are several open-
source IoT platforms such as Kaa, DeviceHive, OpenIoT, and
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ThingSpeak, which enable programmers to connect different
devices to the Internet. For this article, we selected the Kaa
platform [12] because it provides all the functionality needed
to operate on large-scale data and has been used in various
industries. Kaa is an open-source middleware platform for the
IoT nodes, which provides software development kit (SDK) for
the nodes to communicate data to the platform as well as the
required cloud infrastructure for managing data.

In this article, we propose a DSM system for energy man-
agement in smart homes based on user’s behavior monitoring in
real time during peak hours. The proposed system consists of
three major components. The first component generates a con-
sumption model via: 1) employing analytical hierarchy process
(AHP) for extracting factors that affect the amount of power
consumption the most; 2) using K-means clustering algorithm
to cluster users based on the significant factors; and 3) finally
describing a set of thresholds as well as a permissible amount of
energy for each class of users. The second component includes
an optimization module to find the optimal mal day-ahead sched-
ule for each user to shift the shiftable loads during a day. Finally,
the third component of the proposed system is a control algo-
rithm, which is based on the traditional random early detection
(RED) algorithm [13] used in the Internet congestion control.
The control unit utilizes the outputs of the first component, the
real-time power consumption of the user (knowing the optimal
schedule), and the power grid state to efficiently decrease the
amount of load during peak hours in real time. The real-time
power consumption of the user is collected through an IoT
platform. We have implemented a testbed containing four levels,
including sensors, gateways, server, and web portal. Gateway
and server are implemented based on the Kaa IoT platform,
which guarantees load balancing and high availability.

A. Contributions

Knowing that IoT can be utilized for different applications
of smart homes and various areas of energy management, this
article is an aggregation of IoT and an energy management
system that reduces the power consumption during peak hours in
real time. The contributions of the current study are summarized
as follows.

1) Developing a model based on AHP, which finds out the
factors that affect the power consumption the most.

2) Presenting a DR program with a convex optimization func-
tion for minimizing both customer and utility company
costs.

3) Proposing an innovative control algorithm based on the
RED algorithm for energy management in smart homes,
which works in real time and reduces the amount of
consuming power during peak hours.

4) Implementing an IoT testbed for the smart home scenario.
5) Employing the Kaa platform for supporting DSM use

cases by implementing gateway and server of the men-
tioned IoT testbed.

6) Improving users’ behaviors in terms of power consump-
tion via a graphical web portal that visualizes their power
consumption. The reports on minimum, maximum, and

average of the community help users to change their
behaviors.

7) Evaluating the performance of the proposed system based
on the real implemented testbed and simulation.

The rest of the article is organized as follows. Section II
discusses related work in this scope. Section III presents the
proposed model, which consists of the learning model and the
control unit. Section IV presents the implementation and simula-
tion results and confirms the performance of the proposed model
in addition to comparison to related work. Finally, Section V
concludes the article.

II. RELATED WORK

DR and DSM are critical applications of IoT that are divided
into different categories. In [14], the authors propose a pricing
policy framework for DR in smart grid machine-to-machine
(M2M) networks based on the provider’s price announcements.
It also controls the appliances remotely during peak hours ac-
cording to the price schedule set by each user. In this system,
individual users adapt to the price signals to maximize their
benefits. In [15], a real-time DR algorithm is proposed, which
can be used to allocate resources among heterogeneous devices
efficiently. This can be determined by choosing an optimal strat-
egy that maximizes a utility function for a specific solution. This
system also has the potential to not only reduce peak demand but
also increase the overall efficiency of the system. As mentioned
in [16], DR applications may be based on web services that use
IoT protocol stack rather than classic Internet protocol stack,
which reduces web service traffic overhead by over 10%. A
web of things architecture also is presented in [17] that manages
households’ consumption and programs the power grid state. DR
applications can be based on social media. In [18], the authors
developed a system that takes information from appliances and
posts information to the Twitter social network. The proposed
gateway makes decisions based on the received data and sends
notifications to Twitter.

In the smart grid, typical applications are distributor centric
rather than customer centric. These applications usually have is-
sues of scalability and user acceptance. To solve such problems,
customer-centric DR applications, called DSM applications,
recently emerged that fit customers’ needs. In [19], a new method
named home energy management as a service (HEMaaS) is
proposed, which is based on an advanced neural fitted Q-learning
algorithm to reduce peak load that is self-learning and adap-
tive. HEMaaS provides a flexible and energy-efficient decision-
making system for home energy management. Authors in [20]
also emphasize on the importance of DSM by investigating a
smart home equipped with IoT sensors. Besides, a game theory
algorithm is proposed that manages daily power consumption
of households by the proposed DSM framework.

In IoT applications, many devices are connected, which pro-
duces a large amount of data. Issues related to data transmission,
process, and storage force IoE to be integrated by cloud com-
puting. Furthermore, to enhance the performance and reduce
the volume of transmitted data and process information in an
acceptable time, fog computing is suggested as a layer between
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Fig. 1. Proposed system components.

the IoE layer and the cloud layer. In [21], a cloud-based DR
(CDR) model is proposed, which is implemented as a two-tier
cloud computing platform. Authors in [2] also present a fog-
based IoE architecture for transactive energy (TE) management
systems that consists of three different layers, including gate-
ways, local fog nodes, and cloud servers. Another category of
DR application includes models that work in a combination of
different domains. For example, in [22], based on a combination
of time-based programs and incentive-based DR programs, a
real-time incentive DR program is proposed, which reduces the
peak load through energy management at the customers’ side.

Inhabitants’ behavior is a significant factor that influences
energy consumption. The ultimate goal of all research focusing
on user’s behavior is to reduce the energy consumption in build-
ings while maintaining a maximum comfort level for occupants
[7]. In [23], it is shown that consumption relates to unconscious
habits, and technological structures are the most useful when
analyzing households’ energy consumption. In the mentioned
article, practice theory is introduced as an approach that better
includes both unconscious habits and technological structures,
which is the best way to conceptualize energy-consuming prac-
tices in everyday life. Much research has been done in the scope
of user behavior pattern prediction. The authors in [7] try to
develop algorithms for sensor-based modeling and prediction of
user behavior in intelligent buildings and connect the behavioral
patterns to building energy consumption by event-based pattern
detection. The results of the dynamic schedule show significant
energy savings with minimal comfort sacrifice. Some research
focus on building equipment, especially office equipment. For
example, in [24], the energy consumption patterns observed
across two U.K. workstations are presented. In this article, the
potential effect of using feedback to encourage energy reduction
through behavior change is explored. Energy consumption was
monitored for four months. The results revealed a significant
variation in consumption patterns between workstations pro-
viding the same function in comparable locations. The study
establishes that it is possible to reduce energy use up to 20%
through behavior change in typical U.K. office spaces.

III. PROPOSED MODEL

Fig. 1 shows the elements of the proposed model, which
introduces a DSM system based on user behavior monitoring.
As shown in this figure, the following functions are applied to
make the proposed model.

1) Model building: During this stage, based on experts’
knowledge and a dataset, a model is generated, which is

one of the inputs of the control unit. RECS2015 dataset
has been used to determine the factors that affect the
power consumption the most. This is done through an AHP
analysis based on experts’ knowledge. The selected factors
are then analyzed to check their validity, and the data are
clustered based on the final factors into five clusters. A
permissible amount of power consumption is determined
based on the average amount of power consumption in
the dataset and experts’ inputs. A set of thresholds for
consumption is also assigned to each class. The class of
user, a set of thresholds, and permissible amount of power
consumption is the output of the model and the input of
the control unit. Details about this model are presented in
Section II-A.

2) Prediction: As the proposed scheduling mechanism is
based on the day-ahead approach, the predictor is used
to predict the future day power consumption. Power con-
sumption history is used to predict the power consumption
of the users for the next day.

3) Day-ahead scheduling: The day-ahead scheduling mod-
ule is used to optimize the shiftable load of users and
schedule power consumption. Load scheduling is done
through a convex optimization problem. The output of the
scheduler is recommended to the user, which optimizes
the load during the day. Users may or may not follow
the recommended scheduling. Therefore, knowing the
recommended power consumption, users may consume
power differently. Next, real-time power consumption is
monitored through an IoT testbed and is considered as an
input for the control unit. Section III-B explains how the
day-ahead scheduler works.

4) Control: The control unit uses the class of users, some set
of thresholds, the permissible amount of power consump-
tion, real-time power consumption, and power grid state
to execute different actions to reduce power consumption
during peak hours. Section III-C explains how the control
unit works.

A. Model Building

1) Analytical Hierarchy Process: Information about the net-
work power consumption can lead us to efficiency and better
management. Therefore, we need to know which factors influ-
ence power consumption the most. For this purpose, we follow
the following steps.

a) Dataset selection: There are different datasets that col-
lect energy-related data for housing units. We selected the Resi-
dential Energy Consumption Survey (RECS) [25] version 2015,
which is a periodic study conducted by the U.S. Energy Infor-
mation Administration (EIA) that provides detailed information
about energy usage in U.S. homes. More than 500 factors are
involved in this dataset. The housing characteristics data and the
billing data are the basis for individual energy consumption.

b) AHP analysis: This section is to examine the factors
that affect power consumption. Due to a large number of charac-
teristics for each home in the RECS2015 dataset, we need to find
the most effective factors. To solve this issue, we have used the
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Fig. 2. Decision hierarchy.

AHP, which belongs to the multicriteria decision-making meth-
ods (MCDM). The basic idea of AHP is to capture the expert’s
knowledge of complex decision-making problems under study.
The core of AHP is the comparison of pairs instead of sorting
(ranking), voting (e.g., assigning points), or the free assignment
of priorities. In AHP, the decision-maker first breaks down the
problem into a hierarchy of goals, criteria, and alternatives. The
goal of the decision is placed at the top, criteria in the middle,
and alternatives at the bottom of the hierarchy. Fig. 2 shows
the proposed decision hierarchy. As it illustrates, prioritizing
effective factors in power consumption is placed at the top, which
is our goal. Criteria (bedroom properties, number of electronic
devices, etc.) and subcriteria are placed in the middle. And
finally, at the bottom of the hierarchy, the amount of power
consumption is placed as an alternative. In the AHP analysis, the
consistency ratio (CR) of 0.10 or less is acceptable to continue
the analysis. In this article, we have calculated all IR for experts’
judgments, and all were consistent.

c) Ratio threshold: In the previous section, final weights
obtained from the AHP analysis output show the factors’ pri-
ority to the goal. Factors with more final weights affect power
consumption more. The number of selected factors depends on
a threshold that is applied to the weights. Due to the sensitivity
of the scope, developers can choose a different ratio (weights)
threshold with a different number of factors. Here, first, we have
multiplied all final weights by ten and then set the ratio threshold
to α so that L factors are chosen as the characteristics that affect
the most the amount of power consumption. By setting α = 0.4,
L = 9 factors are selected. Table I shows the sorted effective
factors in power consumption. As it is mentioned, air conditioner
power consumption mostly affects the amount of power that has
been consumed.

2) Factor Analysis: To check the relationship between each
selected factor and the power consumption, we have used the
John’s Macintosh project (JMP) tool for analysis. By using a
prediction model of the mentioned dataset and its validation, a
fit model is created. We fit the models with constant parameters
that are functions of effects. The model is valid to be used since
its probability of F ratio is less than 0.05. To test whether the
linear relationship in the sample data is strong enough to be
used, we perform a hypothesis test of the significance of the

TABLE I
EFFECTIVE FACTORS IN POWER CONSUMPTION

correlation coefficient. To this end, we calculate the P-value
significance test. This test tells how unlikely a given correlation
coefficient r will occur given no relationship. The hypothesis
test lets us decide whether the value of the population correlation
coefficient ρ is close to zero or significantly different from zero.
We decide this based on the sample correlation coefficient r and
the sample sizem. The results from the effect of parameters show
that all parameters are significant to use, except the ninth one,
the “income of householders,” which represents the aggregation
amount of salary each home’s householders earn. The P-value
for each of these parameters should be less than 0.05 to be
significant. The P-value for “income of householders” factor
is equal to 0.05006, which is not less than 0.05; hence, it is not
valid to be used in the next step, clustering. Finally, with L = 8
number of factors, we calculate the correlation coefficients of the
relationship that indicate the strength and direction of the linear
relationship. In this model, all parameters have been tested and
have a positive effect on the amount of power consumed.

Before we start to cluster the data, we assume that we
have L number of factors (which is eight here) in the sys-
tem. Let F = {f1, f2, f3 , . . . . . , fL} show the vector of fac-
tors where fj represents the jth factor (j = 1, 2, . . . ., L). Each
of these factors has different weights that are obtained from
the correlation in the previous step, shown as vector R =
{r1 , r2 , r3 , . . . , rL}. End users also have different input values
for each factor. Suppose vector IN = { in1 , in2 , in3 , . . . , inL}
indicates the input values of the user for L factors. Let vector
U = {u1 , u2 , u3 , . . . , uL} be defined as a normalized user
input vector which is calculated as follows:

uj =
inj · rj∑L
j=1 inj · rj

. (1)

U is applied as the input vector for the clustering process, which
is described in the next subsection.

3) Clustering: In terms of power consumption, we di-
vide users into five different classes of A, B, C, D, and E
which represent groups of “very energy efficient,” “energy-
efficient,” “power-saving,” “power consuming,” and “very
power-consuming,” respectively. For this division, we need to
cluster users into these five groups that indicate their level of
power consumption. RECS2015 dataset has been used to cluster
users. We followed the steps from the previous section and
clustered users by the K-means algorithm [26]. K-means is one
of the learning algorithms that solve the well-known clustering
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problem. It is one of the most popular centroid-based (where ob-
jects closer to the cluster center are grouped together) clustering
methods due to its computational efficiency and low-complexity
implementation [27]. The procedure follows a simple way to
classify a given dataset through a certain number of clusters
(five clusters here). We have used 5686 rows of input data from
the RECS2015 dataset. Of the data, 70% (4000 rows) is used
for training the algorithm, and the rest (1686 rows) is used
for testing. The input matrix dimension equals L = 8 as we
selected eight factors. We have also used the city-block distance
vector. For newly registered users, the classification algorithm
also runs. The error rate in the classification phase is about 0.01
(2 out of 1686), which is an acceptable rate. For each of these
classes, based on the average amount of power consumed in the
dataset and according to experts’ knowledge, the permissible
consumption is determined.

For real-time feedback and automation, we need some thresh-
olds that can control power consumption in real time. Real-time
analysis is an approach to produce useful information from
massive raw data [27]. These thresholds are used for the control
unit, which reacts if the amount of power consumed exceeds
the thresholds. We should consider that these thresholds should
not be bothering users. If individuals feel that their freedom is
threatened, they act to restore that freedom. If people believe that
this process of the smart home is prohibiting them from living
the way they wish, they may respond by consuming power even
more than before [28]. Hence, it is essential to set the thresholds
accurately for each class of users. For each class i, a set of action
thresholds THi are specified as THi = {th1, th2, . . . ., thzi}
where zi represents the number of action thresholds of classi,
which are determined by experts’ knowledge of the system for
each class and may vary due to its needs. By specifying these
thresholds, the permissible consumption in each action threshold
is also determined.

B. Day-Ahead Scheduler

The prediction module is used to predict the load. We use
power consumption history to predict the power consumption
of the users for the next day. The day-ahead scheduling module
is also used to optimize the shiftable load of users and schedule
power consumption. Load scheduling is done through a convex
optimization problem. The final recommended power consump-
tion schedule for the next day is informed to the user. However,
knowing the optimal load schedule, users may still consume
power differently. Hence, real-time power consumption of the
user is considered as an input for the control unit. In the proposed
system, the real power consumption of the user is collected
through an IoT testbed, which contains sensors, gateways, and
server, which will be explained in Section IV. The following
describes how the day-ahead scheduler works.

By using the predicted consumption for the next day, a day-
ahead schedule is provided to the end-users. Optimizing the
energy is known as an essential issue in the literature that seeks to
achieve an efficient tradeoff between low costs and energy usage.
We aim to minimize the cost of energy both for customers and
utility companies. For this purpose, first, we need to model the

cost function of both customers and utility companies. Suppose
Ct

C andCt
U represent the power consumption cost for customers

and utility company at time t ∈ T , respectively, where T repre-
sents the day time set and is split to high-load time H , midload
timeM , and low-load time L. Let Ct

T represents the total hourly
cost of both customers and the utility company. Ct

T is defined
as follows:

Ct
T = Ct

C + Ct
U . (2)

1) Cost Function of Customers: Suppose each customer is
equipped with two types of appliances, including shiftable and
nonshiftable ones. Let Di, D

sh
i , and Dnsh

i denote the total,
shiftable, and nonshiftable appliances sets of each customer
i ∈ N whereDsh

i ∪Dnsh
i = Di, and N represents the customer

set.
Let P t

d,i represent the power consumption of appliances d ∈
Di of customer i ∈ N at time slot t ∈ T . The power load of
shiftable and nonshiftable appliances of customers i at time slot

t are calculated as
←→
P t
i =

∑
d∈Dsh

i
P t
d,i and P̂ t

i =
∑

d∈Dnsh
i

P t
d,i,

respectively. The total power consumption of customer i at time
slot t is computed as

P t
i =
←→
P t
i + P̂ t

i . (3)

Let pmin
d,i , pmax

d,i , [S_timedi , E_timedi ], and Ed,i represent the
minimum power level, the maximum power level, the operation
time which is between the start time and end time, and the total
energy needed for shiftable appliances d ∈ Dsh

i , respectively.
Note that for each customer i ∈ N, the total power consumption
of shiftable appliances during a day

←→
Pi is always fixed and

calculated as

←→
Pi =

24∑
t=1

∑
d∈Dsh

i

P t
d,i, i ∈ N (4)

Let (LL
i , L

M
i , LH

i ) and (prL, prM , prH) indicate the to-
tal load of customer i ∈ N and the ToU price at low-load,
midload, and high-load, respectively, where LH

i =
∑

t∈H P t
i ,

LM
i =

∑
t∈M P t

i , and LL
i =

∑
t∈L P t

i . There are two high-load
periods in the day, including 11 A.M.–3 P.M. and 7 P.M.–10 P.M.
Between these two periods, it considered being midload. The
rest of the day is also considered as low load.

The overall daily cost for customers i ∈ N, Ci, is computed
as follows:

Ci = (LH
i ∗ prH) + (LM

i ∗ prM )− (LL
i ∗ prL). (5)

Since the overall load of nonshiftable appliances is not sched-
uled, we consider the total nonshiftable load of each customer i
as a constant Si as follows:

Si = prH
∑
t∈H

P̂ t
i + prM

∑
t∈M

P̂ t
i − prL

∑
t∈L

P̂ t
i . (6)

The final overall daily cost for customers i is calculated as
follows:

Ci = Si + prH
∑
t∈H

←→
P t
i + prM

∑
t∈M

←→
P t
i − prL

∑
t∈L

←→
P t
i . (7)
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2) Cost Function of Utility Companies: The quadratic cost
function has been widely used to model the hourly cost of energy
provided by utility companies at time t as follows:

Ct
U = atLt

2 (8)

whereat is the cost coefficient at time t ∈ T which is determined
by some elements, such as operating costs, facility construction,
and ownership cost [29], and Lt is the overall load of all
customers and is calculated as Lt =

∑N
i=1 P

t
i . As mentioned

earlier, P t
i is the sum of both shiftable and nonshiftable load of

customer i at time t. Lt can be computed as follows:

Lt =
N∑
i=1

24∑
t=1

(←→
P t
i + P̂ t

i

)
, i ∈ N. (9)

Finally, the overall cost of power consumption for the utility
company is as follows:

Ct
U = at

(
N∑
i=1

24∑
t=1

(←→
P t
i + P̂ t

i

))2

. (10)

3) Optimization Problem: By setting the values of Ct
U and

Ct
C in (2), the final cost Ct

T is calculated. We need to minimize
the total cost by scheduling the energy consumption of each
customer i at time slot t. The day-ahead scheduling problem is
formulated as a convex optimization problem as discussed as
follows, which minimizes the total daily cost of both customers
and utility company:

Minimize Ct
T = Ct

U + Ct
C

= Minimize

⎛⎝∑
i∈N

Ci + at

(
N∑
i=1

24∑
t=1

(←→
P t
i + P̂ t

i

))2
⎞⎠ (11)

subject to:

Ct
i =
←→
Ci + Ĉi, i ∈ N, t ∈ T (11a)

←→
P t
i =

∑
d∈Dsh

i

P t
d,i i ∈ N, t ∈ T (11b)

P̂ t
i =

∑
d∈Dnsh

i

P t
d,i, i ∈ N, t ∈ T (11c)

pmin
d,i ≤ P t

d,i ≤ pmax
d,i , d ∈ Dsh

i , i ∈ N,∈ T (11d)

E_timedi∑
t=S_timedi

P t
d,i = Ed,i , d ∈ Dsh

i , i ∈ N, t ∈ T . (11e)

The proposed quadratic and convex optimization problem
(11) can be solved by a well-known and highly efficient al-
gorithm, interior-point-convex. As it has been proven in [30],
the most important advantage of convex optimization is that the
locally optimal solution is the optimal global solution.

The optimal power consumption schedule is informed to the
user. The presented schedule is based on the historical data of
power consumption. In addition to the diversity of the devices
and objectives to consider, there is also a significant degree of
uncertainty pertinent to households. These uncertainties include
photovoltaics (PV)/wind power production, energy consump-
tion behavior, and weather conditions [31]. Therefore, based
on these uncertainties, the optimal presented schedule may not
happen for all users of the community for all days. Hence, con-
sidering the real consumption behavior of users, a control system
is presented in the control unit to control the load in peak hours.

C. Control Algorithm

This section explains the proposed control algorithm, which
receives the following inputs:

1) class of user;
2) set of thresholds;
3) permissible amount of power consumption from the model

building phase;
4) real-time power consumption;
5) power grid state;
The control algorithm is implemented with the initial idea of

the RED algorithm. RED is a congestion avoidance mechanism
that takes advantage of transmission control protocol (TCP)’s
congestion control mechanism. When it comes to DSM, there
are different approaches to the RED algorithm. If the real con-
sumption of the user exceeds the permissible amount of energy
at a specific threshold, the relevant action for that threshold
runs. There are different actions for different thresholds. Soft
notification action includes sending a notification to the user
and notifying that the amount of real consumption is exceed-
ing a certain minimum threshold. Users can analyze the data
through the central point and make informed decisions about
power management [32]. Hard notification action is also used
to warn users again and ask them to turn OFF some of their
appliances. These notifications can be sent on the web portal
or the mobile application. At this point, the feedback from
the user’s behavior is sent to the system for recalculation. If
the user does not pay attention to each of the notifications,
nothing will happen after the user reaches the next threshold.
Before the occurrence of high power consumption during peak
hours, when the user’s real consumption exceeds the permissible
consumption at the next threshold, compared to the permissible
amount of power consumption, another action occurs after soft
and hard notification, which is the reaction system. This reaction
system turns OFF the shiftable appliances of the user’s smart
home that the user already has given the system the privilege
of switching ON and OFF. These appliances are the ones that
the user permits the system to be turned OFF/ON. The flowchart
of this decision-making is shown in Fig. 3. As can be seen,
based on the user’s input values for L selected factors and the
created model from the previous step, a class is assigned to
the user. Then, the set of thresholds and an amount of permis-
sible power consumption for that class are retrieved based on
the expert’s knowledge. Knowing the power grid state, in a
loop, the real-time consumption and permissible consumption
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Fig. 3. Decision-making flowchart.

of the user are compared in real time. Once the action threshold
is violated, the matched action is called. Otherwise, the next
threshold is checked. It continues until peak hours end.

The day-ahead scheduler acts as the load shifting unit that
suggests the users how to shift their consuming power from
peak hours to nonpeak hours based on their history of power
consumption. The control algorithm is the peak clipping tech-
nique that takes action and turns OFF the appliances whenever
it is required. The proposed peak clipping, along with load
scheduling, controls the consuming power of customers during
peak hours.

IV. IMPLEMENTATION AND SIMULATION RESULTS

In this section, using the implementation and simulation re-
sults, we evaluate the performance of the proposed system in
terms of peak load reduction. To this end, we have developed a
testbed as presented in Fig. 4, consisting of four levels, including
smart home devices and sensors, IoT gateway, Kaa server, and
web portal.

To collect householders’ home data, smart meters and smart
plugs are used. Smart meters identify energy consumption pre-
cisely and in much more detail rather than other conventional
meters. A smart meter collects accurate and real-time energy
consumption data and gives specific analysis on it [1]. We have
used our already developed smart meter to measure the amount
of electric energy consumed by a residence [33]. Smart plugs
are connected to home appliances as well. Each smart home can
have several smart plugs that are used with home appliances.
Smart plugs and smart meters communicate with the gateway
and send the collected data to the related gateway through a
Wi-Fi connection.

The IoT gateway and server are implemented through the
Kaa IoT platform. We have implemented the home gateway
on Raspberry Pi3 with Raspbian operating system. We have
programmed the gateway by Java programming language, using
Java SDK from the Kaa server. The gateway collects data from
connected sensors and sends them to the Kaa server. It also
receives commands from the Kaa server and notifies actuators

Fig. 4. Testbed architecture.

(smart plugs only) about the received command. The main
server is implemented on the Kaa platform. Kaa is a highly
flexible, multipurpose, and open-source middleware platform
for implementing complete end-to-end IoT solutions, connected
applications, and smart products, which claims to have essential
middleware for industrial IoT application, by having a set of
methods that can be used to predict future failures and simplify
troubleshooting errors. Kaa can manage data in back-end infras-
tructure through a server and endpoint SDK components. Kaa
nodes in a cluster run a combination of control, operations, and
bootstrap services. They use Apache ZooKeeper to coordinate
services. Interconnected nodes make up a Kaa cluster associated
with a particular Kaa instance. Kaa cluster requires NoSQL
and structured query language (SQL) database instances to
store endpoint data and metadata, accordingly. We have used
Maria DB as the SQL database and MongoDB as the NoSQL
database. The data that are collected from the first layer (sensors
at home) are stored in the MongoDB database. MongoDB is an
operational NoSQL database. It relaxes many of the relational
databases’ properties such as ACID transactional properties to
allow for greater querying flexibility, operational scalability and
simplicity, higher availability, and faster read/write operations
[27]. Kaa platform provides many features, including high avail-
ability and scalability, active load balancing, hybrid encryption
system for security that is based on RSA with 2048-bit key pair,
and AES with 256(512)-bit key.

Finally, on the fourth level, a web portal is designed to
visualize the collected data. It fetches the data from MongoDB
database, containing sensors’ power consumption data, and vi-
sualizes them. Feedbacks sent from the visualization system
vary according to their type. They can be factual (showing
real-time consumption, average, a maximum and minimum load
of the network), social (e.g., using smiling/frowning faces), or
comparative (e.g., current versus historical consumption data).
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Fig. 5. Implementation testbed.

Factual and comparative feedbacks are combined in the de-
signed web portal. Real-time daily and monthly consumption
are provided. A comparison between consumers in society is
also provided, which contains users’ real-time consumption,
average, minimum, and maximum load of the society. Therefore,
users can compare themselves to others and find out their place.
Since the comparison of real-time consumption and permissible
consumption (based on the set of thresholds) in the algorithm is
made in the web portal, to send control commands, restful ap-
plication programming interface (APIs) of Kaa are used to send
unicast notifications from web portal to the Kaa server. The Kaa
server receives this notification and passes the control command
to the selected endpoint (gateway) specified in the notification
message. The gateway also sends the control command to the
sensors to be applied.

A. Single Home Monitoring Results

The real implementation of the testbed is shown in Fig. 5.
We have implemented the proposed mechanism in a single
home during a whole day on December 29, 2018, which is
gathered by IoT sensors from the previous section. These data
are captured via IoT nodes and then are sent to the Kaa home
gateway implemented on Raspberry pi3. The home gateway
communicates with IoT sensors every 10 min. According to the
user’s input, this home belongs to class D, a power-consuming
group. A heater, as a shiftable appliance, is connected to the
smart plug. The power consumption of the heater from 9 A.M.
to 3 P.M. is shown in Fig. 6. Fig. 7 also shows the hourly power
consumption and cumulative energy. All these data are gathered
through our testbed every 10 min and have been available and
plotted in the portal of the user during the day. The plots on the
user’s web portal are live and change whenever new data are
received on the server.

A day-ahead schedule is recommended to the user based
on the history of the user’s power consumption. The control
algorithm is also applied in real time. For this scenario, the
permissible amount of power for each peak period is assigned

Fig. 6. Power consumption of the heater.

Fig. 7. (a) Power consumption. (b) Energy of the residential home.

due to the expert’s knowledge. According to the power grid state,
the first peak load happens from 11 A.M. to 3 P.M. (4 h), and the
second one happens from 7 P.M. to 10 P.M. (3 h). As shown in
Fig. 8, we have set two thresholds for the real scenario, occurring
at 70% and 90% for each class. The action for the first threshold
is a soft notification, and the action for the second one is turning
OFF devices. When the amount of real-time power consumption
reaches almost 70% of permissible consumption, a notification
is sent to the user that notifies the user about their consumption. If
the user does not pay attention to the notification and reaches the
second threshold at 90%, the shiftable allowed appliances to turn
OFF. Fig. 9 shows the total load of “unoptimized,” “optimized,”
and “optimized-controlled” at a different time of the day. The
results confirm that the power consumption during peak hours in
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Fig. 8. Implemented control algorithm.

Fig. 9. Peak reduction in the implementation results.

the “optimized-controlled” graph has been reduced by 31.34%
compared to the “unoptimized” data, which is about 21.76 KW
for the user.

The results of this implementation prove that this system
works appropriately in the real-world scenario and can be ex-
tended to a big scale. Since we have difficulties with providing
the required hardware (such as smart plugs, smart meters), we
tested our algorithm on a community where the power consump-
tion data of residential homes have been simulated. The results
of this simulation are presented in the next section.

B. Community Monitoring Results

In this section, we evaluate the performance of the proposed
system by simulating a community containing 100 different
users in five different classes, A, B, C, D, and E. Different
numbers of appliances have been considered for each class. Each
user has a random number of appliances in selected ranges from
0 to 23. These ranges vary for different classes (e.g., class E
has more appliances than class B). For each class, there is a
limited number of appliances that users will have for sure (e.g.,
refrigerator). Some of these devices are shiftable, while others
are not. Peak hours are the same as the single home scenario.
The permissible amount of power consumption for each peak
period is set for each class of users as follows:

Hcl
1 =

∑nj

j=1 X̃i (t)

njnp1
(12)

TABLE II
PEAK REDUCTION FOR DIFFERENT NOTIFICATION LISTENER RATES

Hcl
2 =

∑nj

j=1 X̃i (t)

njnp2
(13)

wherenj represents the number of customers in each class. X̃i(t)
also shows the real-time power consumption in time slot t.np1=
4 and np2 = 3 represent the two periods of peak load hours as
the first peak load lasts for 4 h, and the second one lasts for 3 h.

A set of thresholds with different actions is set for each class.
For performance evaluation, we have set three thresholds with
three different actions for all classes. The first action threshold
happens when real-time consumption reaches 80% of permissi-
ble energy consumption during peak hours. The selected action
for the first threshold is a hard notification that asks users to
turn OFF some of their devices by themselves. In the simulation
application, we have considered p as the percentage of users
who pay attention to the notification and will turn OFF some
of their devices randomly. Different values of p are tested in
the simulation. As it is shown in Table II, 10%, 30%, and 50%
values forp are considered. Each of these users who pay attention
to the notification turns OFF 20% of their shiftable appliances
randomly. We have set different values for p as we are aware
that in different societies, the percentage of people that really pay
attention to these notifications differ. As can be seen, the higher
the p value is, the less power is consumed during peak hours. The
peak-to-average ratio (PAR) is a critical power network metric
that is defined as the maximum daily load divided by the average
load. Results confirm that the proposed control algorithm has
less PAR compared to the traditional algorithm without any
control. As a result, more p causes less PAR. It means that if this
system can motivate users to pay attention to the first notification
more, the overall peak reduction will increase, which results in
less power consumption.

The second and third thresholds happen when real-time con-
sumption reaches 90% and 95% of the permissible energy in
peak hours, respectively. Turning OFF appliances is chosen as
actions for both the second and third thresholds. When it comes
to peak load reduction, user convenience (UC) must be consid-
ered as well. As mentioned in [19], UC level for 5% and 10%
load reduction is maintained at and above 80%, whereas more
percentage of peak power reduction causes more discomfort for
users. Therefore, by using the results from this article, when
the second action threshold happens, 5% of shiftable appliances
are turned OFF, while we turn OFF 10% of shiftable appliances
for the third threshold. Due to the sensitivity of the system, the
permissible amount of energy for each class can be set with more
restrictions. The results of the algorithm for 100 users based on
three thresholds are shown in Fig. 10. The diagram labeled as
“total load unoptimized uncontrolled” shows the historical data
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Fig. 10. Total power consumption before and after the proposed algorithm.

Fig. 11. Overall customer daily cost.

of users in the community. By applying the proposed day-ahead
scheduling, it can be seen that some unnecessary loads can be
shifted from peak hours to off-peak hours to decrease power
consumption and cost. The results from the optimization prob-
lem are plotted in the diagram labeled as “total load optimized.”
The control unit works only during peak hours. The control
algorithm is applied to the optimized load. As it can be seen
in the “total load optimized controlled” diagram, the total load
during peak hours has reduced. By looking at these graphs and
comparing the total “unoptimized uncontrolled” load with the
total “optimized controlled” load, we conclude that during two
intervals of peak hours, the total load has shifted down by the
rate of 22.42%, which is about 220.22 KW for the community.
It significantly benefits both customers and utility companies in
terms of power consumption. As the consumed power decreases,
it affects the cost as well. To calculate the costs for customers,
we have used the ToU pricing model. Twenty-two cents/kWh
energy price is used for two intervals of high-load hours, known
as peak hours. For midload and low-load hours, grid energy price
is equal to 15 and 8 cents/kWh, respectively. These numbers are
hypothetical to show the cost reduction and may vary in different
countries for different utility companies. We have calculated the
electricity cost of customers with the ToU pricing model based
on the cost function of customers, presented in (7). The overall
customers’ daily cost using the proposed algorithm and power
grid pricing is shown in Fig. 11. Results confirm that customers
benefit from the proposed system financially. Customers can

Fig. 12. Peak reduction for different number of shiftable devices.

Fig. 13. Comparison of the power consumption.

reduce their daily costs at a rate of 13.5%, about $45 per day.
As we have assumed, there are 100 customers in the power grid;
the average daily benefit for customers is almost 45 cents per
customer.

The number of shiftable appliances also affects the perfor-
mance of the proposed algorithm. During the registration phase
in the portal, users will specify which appliances are shiftable
and can be turned OFF during peak hours. It is obvious that if
users set more appliances as shiftable and let the system turn
them OFF automatically during peak hours, the algorithm will
perform better, and the power consumed during peak hours
will reduce. Fig. 12 shows the effect of this fact with different
number of shiftable appliances. We can see that the algorithm
reduces power consumption during peak hours more when 65%
of appliances are set to be shiftable compared to the situation
when only 20% of appliances are allowed to be turned OFF by
the algorithm. Hence, the more users set their appliances as
shiftable, the better the control algorithm works.

With big data, energy information can be extracted, and
corresponding energy strategies can be made. Operational in-
efficiencies, such as always turning ON lights, may waste plenty
of energy, which may be diagnosed and solved via big data
technologies [32]. In Fig. 13, the comparison between users of
the community and the mentioned single home in the previous
section is shown on the web portal of the “single home scenario.”
The user interface plots the average, maximum, and minimum
of the society compared to the actual user consumption. As can
be seen, the consumption of the mentioned home is almost more
than the average of the community. Each customer uses this
information to evaluate his/her consumption. This kind of visual
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Fig. 14. Comparison of our approach and paper [34]’s approach.

representation of data can show how the average of the commu-
nity is behaving, and proper policies could be set for different
communities with different levels of electricity consumption. We
also believe that these visualized data affect customers as well.
It can notify users about the amount of their power consumption
and motivate them to behave better in a community in terms
of electricity usage by comparing themselves to others. Some
people reported that the comparison between their own home
power consumption with the community would help them to
modify their behavioral patterns when it comes to consuming
energy.

C. Comparing With the Existing Approaches

In this subsection, we compare the performance of the pro-
posed system with that of existing work, which presents a mul-
tiobjective demand response optimization model for scheduling
loads in a home energy management system [34]. The results
are shown in Fig. 14. As can be seen, the proposed system can
reduce power consumption more than the existing work.

V. CONCLUSION

In this article, we proposed a DSM system for smart home
energy management, which monitors users’ behavior based on
real-time feedback. The proposed system consists of an opti-
mization module that presents a day-ahead schedule to the user
and a real-time control algorithm that reduces the amount of
power consumption during peak hours. The power grid state, the
real-time power consumption of the user, and the expert-based
model are the inputs of the control unit. The expert-based model
contains three different parts. First, effective factors in terms of
power consumption in residential homes are extracted through
the AHP, which is based on experts’ knowledge. Second, a
threshold is set in order to select a specific number of effective
factors according to their priority. Selected factors are validated
through the JMP tool to pass the significant test. Final significant
factors are inputs for the last part, which clusters users based on
the amount of power consumed with the K-means algorithm.
It assigns a set of thresholds and permissible amount of power
consumption for each class. Based on the output of the model
for each user, the control unit has different outputs for different

users, which leads to peak reduction. Real-time power consump-
tion of the residential homes is collected through an IoT testbed.
The implemented testbed includes sensors, home gateways,
server, and web portal. The home gateway and server have been
implemented on the Kaa IoT platform. The information provided
in the web portal helps customers make intelligent decisions for
their power consumption. We have used the deployed testbed
to run the algorithm. We evaluated the proposed model through
simulation and real implementation. Results confirm that the
proposed system decreases the total power consumption during
peak hours. Presenting an online classifier and linear program-
ming for thresholds’ extraction are our future works.

REFERENCES

[1] K. Wang et al., “A survey on energy Internet: Architecture, approach,
and emerging technologies,” IEEE Syst. J., vol. 12, no. 3, pp. 2403–2416,
Sep. 2018.

[2] M. Y. Moghaddam and A. Leon-Garcia, “A fog-based Internet of energy
architecture for transactive energy management systems,” IEEE Internet
Things J., vol. 5, no. 2, pp. 1055–1069, Apr. 2018.

[3] P. Koponen et al., “Definition of smart metering and applications and
identification of benefits,” Deliverable D3 of the European Smart Metering
Alliance ESMA, London, U.K., Ver. 1.1, 2008.

[4] S. V. Kadu, D. S. Bhosale, and J. Bsiotr, “Energy meters using Internet of
Things platform,” Int. Res. J. Eng. Technol., vol. 4, no. 6, pp. 1516–1519,
Jun. 2017.

[5] E. Et-Tolba, M. Maaroufi, and M. Ouassaid, “Demand side management
algorithms and modeling in smart grids: A customer’s behavior based
study,” in Proc. Int. Renewable Sustain. Energy Conf., 2013, pp. 531–536.

[6] N. Ruiz, I. Cobelo, and J. Oyarzabal, “A direct load control model for
virtual power plant management,” IEEE Trans. Power Syst., vol. 24, no. 2,
pp. 959–966, May 2009.

[7] B. Dong and B. Andrews, “Sensor-based occupancy behavioral pattern
recognition for energy and comfort management in intelligent buildings,”
in Proc. Building Simul., Jul. 2009, pp. 1444–1451.

[8] M. Erol-Kantarci and H. Mouftah, “TOU-aware energy management and
wireless sensor networks for reducing peak load in smart grids,” in Proc.
IEEE 72nd Veh. Technol. Conf. - Fall, 2010, pp. 1–5.

[9] S. van Dam, C. Bakker, and J. van Hal, “Home energy monitors: Impact
over the medium-term,” Building Res. Inf., vol. 38, no. 5, pp. 458–469,
2010.

[10] M., Lopes, C., Antunes, and N., Martins, “Energy behaviours as promoters
of energy efficiency: A 21st century review,” Renewable Sustain. Energy
Rev., vol. 16, no. 6, pp. 4095–4104, 2012.

[11] T. Malche and P. Maheshwary, “Harnessing the Internet of things (IoT):
A review,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 5, no. 8,
pp. 320–323, 2015.

[12] Kaa IoT Platform Documentation. Accessed: Dec. 3, 2017. [Online].
Available: https://kaaproject.github.io/kaa/docs/v0.10.0/Welcome/

[13] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

[14] S. Ali, R. Ahmad, and D. Kim, “A study of pricing policy for demand
response of home appliances in smart grid based on M2M,” in Proc. 10th
Int. Conf. Frontiers Inf. Technol., 2012, pp. 231–236.

[15] S. Hong, M. Yu, and X. Huang, “A real-time demand response algorithm
for heterogeneous devices in buildings and homes,” Energy, vol. 80,
pp. 123–132, 2015.

[16] V. Altmann, J. Skodzik, F. Golatowski, and D. Timmermann, “Investiga-
tion of the use of embedded web services in smart metering applications,”
in Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc., 2012, pp. 6172–6177.

[17] S. Mohanty, B. Panda, and B. Pattnaik, “Implementation of a web of
things based smart grid to remotely monitor and control renewable energy
sources,” in Proc. IEEE Students’ Conf. Elect., Electron. Comput. Sci.,
2014, pp. 1–5.

[18] J. Lloret, E. Macías, A. Suárez, and R. Lacuesta, “Ubiquitous mon-
itoring of electrical household appliances,” Sensors, vol. 12, no. 11,
pp. 15159–15191, 2012.

Authorized licensed use limited to: University of Warwick. Downloaded on December 15,2023 at 16:30:27 UTC from IEEE Xplore.  Restrictions apply. 

https://kaaproject.github.io/kaa/docs/v0.10.0/Welcome/


MEHR NEZHAD et al.: JOINT PEAK CLIPPING AND LOAD SCHEDULING BASED ON USER BEHAVIOR MONITORING 1213

[19] C. Mahapatra, A. Moharana, and V. Leung, “Energy management in smart
cities based on Internet of Things: Peak demand reduction and energy
savings,” Sensors, vol. 17, no. 12, 2017, Art. no. 2812.

[20] M. S. Hoosain, S. Rimer, and B. S. Paul, “Smart homes: Energy efficiency
based on demand side management and game theoretic algorithm,” in Proc.
5th IASTED Int. Conf., 2016, pp. 1–7.

[21] M. Yaghmaee, A. Leon-Garcia, and M. Moghaddassian, “On the perfor-
mance of distributed and cloud-based demand response in smart grid,”
IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5403–5417, Sep. 2018.

[22] M. Eissa, “First time real time incentive demand response program in smart
grid with “i-Energy” management system with different resources,” Appl.
Energy, vol. 212, pp. 607–621, 2018.

[23] K. Gram-Hanssen, “New needs for better understanding of household’s
energy consumption—Behaviour, lifestyle or practices,” Architectural
Eng. Des. Manage., vol. 10, no. 1/2, pp. 91–107, 2013.

[24] M. Mulville, K. Jones, and G. Huebner, “The potential for energy reduction
in UK commercial offices through effective management and behaviour
change,” Architectural Eng. Des. Manage., vol. 10, no. 1/2, pp. 79–90,
2013.

[25] “Residential energy consumption survey (RECS) - Data,” U.S. Energy
Inf. Admin., Washington, DC, USA. Accessed: May 15, 2018. [Online].
Available: https://www.eia.gov/consumption/residential/data/2015/

[26] G. Wilkin and X. Huang, “K-means clustering algorithms: Implementation
and comparison,” in Proc. 2nd Int. Multi-Symp. Comput. Comput. Sci.,
2007, pp. 133–136.

[27] R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, “Big data meet
cyber-physical systems: A panoramic survey,” IEEE Access, vol. 6,
pp. 73603–73636, 2018.

[28] A. Zipperer et al., “Electric energy management in the smart home:
Perspectives on enabling technologies and consumer behavior,” Proc.
IEEE, vol. 101, no. 11, pp. 2397–2408, Nov. 2013.

[29] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, and A. Leon-
Garcia, “Autonomous demand-side management based on game-theoretic
energy consumption scheduling for the future smart grid,” IEEE Trans.
Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

[31] M. Beaudin, H. Zareipour, and A. Schellenberg, “Residential energy
management using a moving window algorithm,” in Proc. 3rd IEEE PES
Innov. Smart Grid Technol. Europe, 2012, pp. 1–8.

[32] J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green challenges: Big
data toward green applications,” IEEE Syst. J., vol. 10, no. 3, pp. 888–900,
Sep. 2016.

[33] M. Yaghmaee and H. Hejazi, “Design and implementation of an Internet
of Things based smart energy metering,” in Proc. IEEE Int. Conf. Smart
Energy Grid Eng., 2018, pp. 191–194.

[34] J. Veras et al., “A multi-objective demand response optimization model for
scheduling loads in a home energy management system,” Sensors, vol. 18,
no. 10, 2018, Art. no. 3207.

Mahshid Mehr Nezhad (Student Member, IEEE)
received the B.S. degree in software engineering from
Semnan University, Semnan, Iran, in 2016, and M.S.
degree in software engineering from the Ferdowsi
University of Mashhad, Mashhad, Iran, in 2018. She
is currently working toward the Ph.D. degree in com-
puter science with the University of Warwick, Coven-
try, U.K.

Her research interests include Internet of Things
(IoT), network security, and payment security.

Mohammad Hossein Yaghmaee Moghaddam (Se-
nior Member, IEEE) received the B.S. degree from
the Sharif University of Technology, Tehran, Iran, in
1993, and the M.S. and Ph.D. degrees in communi-
cation engineering from the Amirkabir University of
Technology (formerly Tehran Polytechnic), Tehran,
Iran, in 1995 and 2000, respectively.

From November 1998 to July1999, he was a Vis-
iting Research Scholar with Network Technology
Group, C&C Media Research Labs, NEC Corpora-
tion, Tokyo, Japan. From September 2007 to August

2008, he was a Visiting Associate Professor with the Lane Department of
Computer Science and Electrical Engineering, West Virginia University, Mor-
gantown, WV, USA. From July 2015 to September 2016, he was a Visiting
Professor with the Electrical and Computer Engineering Department, University
of Toronto (UoT), Toronto, ON, Canada. He is currently a Full Professor
with the Computer Engineering Department, Ferdowsi University of Mashhad
(FUM), Mashhad, Iran. His research interests include smart grid communication,
software defined networking, and network function virtualization.

Mohsen Asadi received the M.Sc. degree from the
Sharif University of Technology, Tehran, Iran, in
2009, and the Ph.D. degree from Simon Fraser Uni-
versity, Burnaby, BC, Canada in 2014.

He is an Assistant Professor with Ferdowsi Univer-
sity of Mashhad, Mashhad, Iran. Previously, he was
a Senior Research and Software Engineer with SAP
Canada, Toronto, ON, Canada, where he obtained
seven U.S. patents with his colleague on data ana-
lytics. He is the author or coauthor of more than ten
journal papers and more than 20 conference papers

in reputed venues in computer science. His research interests include cloud
computing, big data systems, and Internet of Things platforms.

Authorized licensed use limited to: University of Warwick. Downloaded on December 15,2023 at 16:30:27 UTC from IEEE Xplore.  Restrictions apply. 

https://www.eia.gov/consumption/residential/data/2015/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


