
Security Analysis of Mobile Point-of-Sale
Terminals

Mahshid Mehr Nezhad∗, Elliot Laidlaw∗, and Feng Hao∗

* Department of Computer Science, University of Warwick, UK
{Mahshid.Mehr-Nezhad,Elliot.Laidlaw,Feng.Hao}@warwick.ac.uk

Abstract. The increasing prevalence of Card Present (CP) transac-
tions has driven the growth of mobile Point-of-Sale (mPoS) terminals.
These compact, wireless, and low-cost terminals allow merchants to pro-
cess transactions conveniently by utilizing a mobile phone. In this pa-
per, we analyze the security implications of mPoS terminals with a fo-
cus to study the merchants’ mobile phones as a key component in the
mPoS ecosystem. Our examination covers the security aspects of the
mobile phone’s communication with the mPoS terminal and the pay-
ment provider server, and also the security risks in the mobile phone
application itself. We perform an eavesdropping attack to reveal the
cryptographic keys in the BLE (Bluetooth Low Energy) communication
between the mPoS terminal and the merchant phone, execute a man-
in-the-middle (MITM) attack to tamper with the mPoS terminal mes-
sages transmitted between the mPoS terminal and the payment provider
server, and reverse engineer the mobile phone application to disable the
security features that are controlled by the mobile phone.

Keywords: EMV · Payment Systems · Contactless Payment · mPoS
Terminals

1 Introduction

Card Present (CP) transactions, also known as face-to-face (F2F) transactions,
are growing in popularity as consumers increasingly use credit and debit cards
for purchases [8], in contrast to Card Not Present (CNP) transactions. CP trans-
actions are performed when the card is physically present, typically at a Point-of-
Sale (PoS) terminal, while CNP transactions occur when neither the cardholder
nor the credit card is physically present at the time of the transaction [28]. The
focus of this paper is CP transactions.

Traditionally, PoS terminals have been used to process CP transactions.
These terminals are typically large, fixed devices that are found in retail stores
and other locations where goods and services are sold. They are connected to a
payment processor through a wired or wireless network. However, with the grow-
ing demand for more flexible and cost-effective payment solutions, mobile PoS
(mPoS) terminals have emerged as an alternative to traditional PoS terminals
due to their flexibility and affordability, especially for small businesses. Examples

2 Mehr Nezhad et al.

are Sumup [29], Square [27], and iZettle [14]. These terminals are small, compact,
low-cost, wireless and easy to configure, requiring a few simple steps. They are
equipped to accept various payment methods such as debit/credit/prepaid cards
with magnetic strips or embedded chips, contactless payments through mobile
wallets, QR codes, and/or cash and checks [9]. They offer the ability for anyone
with a bank account to establish their own payment terminal, mostly without
requiring a business account or a fixed contract.

Although they provide convenience for merchants and customers, they raise
potential risks that can be exploited for malicious purposes. This can include
holding an mPoS terminal near a victim’s payment device (credit/debit card or
Near Field Communication (NFC)-enabled devices such as smartphones or wear-
able devices (e,g, smartwatches) without their knowledge, in conjunction with
other emulation hardware, to perform malicious activities. An example of such
exploitation is using these mPoS terminals in a man-in-the-middle (MITM) at-
tack setup, as shown in [22], which bypasses the lock screen on mobile phones as a
method of cardholder verification when a Visa card is utilized on Apple Pay with
transit mode enabled. Furthermore, studies conducted by researchers at ETH
Zurich have revealed various methods for bypassing the Personal Identification
Number (PIN) on contactless cards during transactions above the contactless
limit, including PIN bypass on Visa cards [3] and on Mastercard cards [4, 5] by
using an mPoS terminal with emulators. Another example is the mPoS-based
passive attack (also known as digital pick-pocketing), which effectively combines
all the required emulation components in a relay attack in a single mPoS termi-
nal for a fraudulent merchant to perform passive relay attacks in order to steal
money from users via contactless transactions without their knowledge [17].

The management of these terminals is usually done with a mobile device such
as a mobile phone or tablet which plays a crucial role in various aspects of the
transaction process, including the establishment of a Bluetooth connection with
the mPoS terminal, the connection to the payment provider server over the in-
ternet, and the installation of an application on the device to manage the mPoS
terminal. In this paper, the potential security risks and vulnerabilities of mPoS
terminals are analyzed with a focus on the involvement of mobile phones in their
management, which is owned by the merchant. Specifically, the security aspects
of the communication between the mobile phone and the mPoS terminal, the
communication between the mobile phone and the payment provider server, and
the mobile phone application itself are examined. The security of the Bluetooth
Low Energy (BLE) communication between the mobile phone and the mPoS
terminal is analyzed, and methods for revealing the cryptographic keys used in
this communication are explored. Furthermore, a MITM attack is performed to
demonstrate the vulnerability of the communication between the mobile phone
and the payment provider server. Additionally, the feasibility of reverse engi-
neering the mobile phone application code is shown, and the modification of
the security features of the mPoS terminals controlled by the mobile phone is
demonstrated. We summarize our contributions as follows:

Security Analysis of Mobile Point-of-Sale Terminals 3

– Performing an eavesdropping attack on the BLE communication between
the mobile phone and the mPoS terminal to extract the cryptographic keys
used for communication;

– Performing a MITM attack between the mobile phone and the payment
server to intercept and tamper with the messages to be displayed on the
terminal;

– Demonstrating the feasibility of reverse engineering the mobile phone appli-
cation code and the alteration of the security features of the mPoS terminals
that are controlled by the mobile phone.

This paper employs the terms card reader, terminal, and mPoS terminal
interchangeably. The rest of the paper is organized as follows. In Section two, we
provide the background and the related work on studying the mPoS terminals
vulnerabilities. Section three explains encryption security, with a focus on the
BLE communication between the mPoS terminal and the mobile phone. Section
four explains network security, with a focus on the security vulnerabilities of the
HTTP communication between the mobile phone and the payment server. In
Section five, we investigate the mobile application installed on the mobile phone
and demonstrate the feasibility of bypassing the security features, followed by a
discussion in Section six. Finally, we conclude the paper in Section seven.

2 Background and Related Work

The installation of an mPoS terminal requires a series of straightforward steps.
These steps include purchasing the device, which can vary in price based on its
features (with options starting as low as £19), registering for an online account
(usually done via the vendor website), installing the corresponding application
on the merchant’s mobile phone, pairing the phone with the terminal, and finally,
making transactions.

The ecosystem of mPoS terminals and their communication with various
entities in transactions are depicted in Fig. 1. The mPoS terminal is operated by
a mobile phone, owned by the merchant. The merchant downloads an application
on their mobile phone and uses it to connect to the mPoS terminal. This enables
the merchant to initiate and request payments. When the payment is sent from
the merchant’s mobile phone to the mPoS terminal, the user is ready to pay.

As shown in Fig. 1, the user has the option to make a payment transac-
tion through either a contactless or chip-and-PIN method by tapping, insert-
ing, or swiping their payment device against the mPoS terminal (1). The pay-
ment is then transmitted from the mPoS terminal to the merchant’s mobile
phone through Bluetooth communication (2). The transaction information is
then transmitted from the merchant’s mobile phone to the payment provider
server for authorization (3). The payment provider, in turn, communicates with
the acquirer bank to verify the transaction details and ensure its security and
accuracy (4). The acquirer verifies the authenticity of the customer’s payment
card and checks the available funds with the payment network (5), which com-
municates with the card issuer (6). Upon receiving approval from the card issuer,

4 Mehr Nezhad et al.

(1) (2)

User

mPoS Terminal Merchant Phone

Payment Provider

Payment Network

Issuer Bank Acquirer Bank

(6) (5)

(4)
(7)

(3)

Fig. 1. Mobile Point-of-Sale (mPoS) Terminals Ecosystem

the customer’s account is charged, and the customer is notified (7). The mer-
chant’s account is credited, and the notification is propagated all the way back
to the merchant’s mobile phone.

The mPoS terminals have been the subject of security studies in the past
decade. One of the first studies, by Frisby et. al. [10] in 2012, investigated the
smartphone-based PoS systems that consist of a software application combined
with an audio-jack magnetic stripe reader (AMSR) on a smartphone. The study
focused on mPoS systems that relied on a smartphone, incorporating an AMSR
and a corresponding application running on an Android smartphone. The secu-
rity assessment concluded that any application running on the smartphone could
potentially disable the magnetic stripe reader and obtain confidential crypto-
graphic keys. However, the architecture of mPoS terminals has since evolved,
and the current study is not centred around AMSR but shifts the focus from
audio-jack magnetic stripe smartphone-based PoS systems to mPoS terminals
that are controlled via smartphones.

A subsequent study on mPoS terminals is by Mellen et. al. [18] where they
demonstrated potential attack vectors for Square [27] mPoS terminals, both in
the software and hardware. In software, their research found security weaknesses
in the old Square terminals, which were later deprecated, and discovered vul-
nerabilities in the encrypted Square reader S4 model and Square registration
application, which have since been addressed. In the hardware, the researchers
discovered that the Square Reader devices used a chip for point-of-swipe encryp-
tion, but were able to bypass the encryption by jumping the connection from the
magnetic head reader to the headphone jack input or by crushing the encryption
chip. The attack tool, called Swordphish, was developed to record unencrypted
swipes and transmit the credit card information to an external server.

In another study published in [15], the security of mPoS terminals, with
a specific emphasis on the Miura [30] Shuttle chip-and-PIN reader, was thor-

Security Analysis of Mobile Point-of-Sale Terminals 5

oughly investigated. The researchers demonstrated the capability of performing
arbitrary code execution as a root user on the device, utilizing both the USB
and Bluetooth interfaces. Additionally, they exhibited how they could gain root
access to the terminal via the chip-and-PIN mode, thereby manipulating the
display and keyboard of the device to elicit the entry of the user’s PIN, by
changing the displayed message to “Try Again” and downgrading to magnetic
stripe (magstripe) mode. However, this vulnerability was remediated by 2014.

In 2018, researchers in [11] conducted a follow-up investigation, exploiting a
vulnerability that existed at that time through the Bluetooth interface. It was
found that the SumUp [29] terminal transmitted commands in plaintext over
Bluetooth, thereby allowing for the sending of arbitrary commands and tamper-
ing of amounts, following the reverse engineering of the terminal’s characteristics
and functions. As a result, researchers were able to perform a similar attack vec-
tor as outlined in [15], by manipulating the displayed messages to prompt the
user to swipe their card, with a message that reads “Please Swipe Card”. Our
subsequent analysis of transaction data collected from SumUp terminals, how-
ever, revealed that the vulnerability had been addressed by the vendor, with the
implementation of encryption for all messages. More details will be provided in
Section 3. Thus, the demonstrated attack vector is no longer viable, as a success-
ful attacker would require knowledge of the encryption key to send valid messages
to the card reader through Bluetooth communication. The researchers also ex-
plored the manipulation of amounts in magstripe mode transactions, through
the forcing of card swiping. Finally, the study highlights the use of a tamper de-
tection circuit in the tested terminals, which would render the device inoperable
in the event of attempted tampering.

Having previously addressed vulnerabilities from various angles on different
mPoS terminals, in this paper, we explore the mPoS terminal ecosystem from a
novel standpoint, examining the capacity of merchant’s mobile phones to initiate
attacks as it is a crucial part of the mPoS ecosystem. This study involves a com-
prehensive analysis of the mobile application and the communication protocols
between the mPoS terminal, merchant phone, and payment provider server. The
aim of the analysis is to identify and examine security weaknesses at various
layers, in order to provide insights into the mitigation of associated risks. The
results of our analysis will be presented in the subsequent sections of this paper.

3 Encryption Security

The deployment of an mPoS terminal requires the establishment of a wireless
communication channel with the merchant’s device, typically a mobile phone
which is owned by the merchant. Bluetooth Low Energy (BLE) is a widely used
technology for this purpose. The merchant first pairs an mPoS terminal with
their mobile phone and uses that established communication link to send and
receive transactions to/from the mPoS terminal. However, it is critical to con-
sider the security implications of this communication channel, as exploitation
of vulnerabilities can result in extracting the cryptographic keys. As previously

6 Mehr Nezhad et al.

stated, the attack vector described in [11] is no longer viable; our analysis of
Bluetooth traffic contradicts the findings in [11], where certain commands sent
to the SumUp terminal were discovered in plaintext. Subsequent security im-
provements made to the SumUp platform have made both packet analysis and
arbitrary command execution more challenging since all the packets on the BLE
communication are encrypted now.

To carry out the arbitrary command execution attack, an attacker would need
knowledge of the encryption key in order to send valid messages to the mPoS
terminal through Bluetooth communication. In this section, we first provide
background information on BLE communication with a focus on the pairing
session and then demonstrate how it is possible to capture the cryptographic
keys of the BLE communication by exploiting existing vulnerabilities in the
pairing session between the mPoS terminal and the merchant’s mobile phone.

3.1 BLE Communication

The BLE protocol stack is comprised of three main architectural layers: the
Controller, Host, and Application. The Host Controller Interface (HCI) serves
as a bridge between the Host and Controller. The Security Manager Protocol
(SMP) located in the Host layer is of particular importance in this context, as
it is responsible for establishing secure connections and facilitating secure data
exchange between devices. SMP outlines the procedures for pairing, authentica-
tion, and encryption of links between devices. During the pairing process, keys
are generated for encrypting links and shared through a key distribution proto-
col for future connections and verification of data. The two devices involved in
pairing are differentiated as the initiating device and the responding device. In
the context of this paper, the initiating device is the merchant’s mobile phone
and the responding device is the mPoS terminal.

Based on the BLE specification [26], the SMP carries out pairing in three
phases: phase 1, phase 2, and phase 3. In phase 1, the devices engage in a Pair-
ing Feature Exchange using the SMP Pairing Request and Pairing Response
commands. During this exchange, information such as Input/Output (I/O) ca-
pability, Out-of-Band (OOB) data flags, Bonding flags, MITM protection and
Secure Connection (SC) requirements are shared between the devices. The Key
Press (KP) flag is only relevant in the Passkey Entry protocol and is ignored
in other protocols. Based on this information, both devices determine their I/O
capabilities and select the appropriate pairing mechanism for use in the next
phase of the pairing process, according to the mapping table specified in the
BLE specification.

In phase 2 of the pairing process, the devices utilize the information ex-
changed in the Pairing Feature Exchange to determine the suitable pairing mech-
anism, either Low Energy Legacy (LE Legacy) pairing or Secure Connection
(SC) pairing. In LE Legacy pairing, the devices exchange a Temporary Key
(TK) and use it to create a Short Term Key (STK) which is used to encrypt the
connection. If the I/O capabilities of a device, either the initiating or respond-
ing device, has a display capability, then it will display a randomly generated

Security Analysis of Mobile Point-of-Sale Terminals 7

passkey value between “000000” and “999999”. The other device should have
an input capability like a keyboard so a user can input the value displayed for
the TK. If the I/O capabilities of both the initiating and responding devices do
not have display capabilities but only have a keyboard, the user needs to guar-
antee that the TKs between the initiating and responding devices are the same.
This is a special case for Passkey Entry. After the generation of the TK, it is
then combined with two random numbers to produce the STK; Mrand for the
initiating device, Srand for the responding device. The Mconfirm and Sconfirm
are 128-bit confirmation values that can be calculated using the confirm value
generation function c1. The detail for this function is out of the scope of this
research and can be found in Bluetooth Specification [26]. The security of this
process depends greatly on the pairing method used to exchange the TK. In
Legacy Pairing, the pairing method can be Just Works, Out of Band (OOB), or
Passkey. In Just Works, the TK is set to zero. In OOB, the TK is exchanged
using a different wireless technology such as NFC. In Passkey, the TK is a 6-digit
number that is passed between the devices by the user.

In LE Secure Connection, instead of using a TK and STK, LE Secure
Connections use a single Long Term Key (LTK) to encrypt the connection.
This LTK is generated and exchanged using the Elliptic Curve Diffie Hellman
(ECDH) protocol. In addition to supporting the pairing methods in the LE
Legacy, it also supports the Numeric Comparison pairing method. It is similar
to Just Works but adds another step at the end. Once the devices confirm that
the confirmation values match, then both devices will independently generate
a final 6-digit confirmation value using nonces. They both then display their
calculated values to the user and the user manually checks both values match
and confirms the connection.

In phase 3, the devices use the secure communication channel established in
the previous phase to share the LTKs which will be used for link encryption.
Each LTK is a 128-bit random number that may be generated along with a 16-bit
Encrypted Diversifier (EDIV) and 64-bit Random Number (Rand) by both the
slave and master device. The exact function of EDIV and Rand keys may vary
depending on the implementation of the BLE protocol, but they are typically
used to identify or derive the LTK for future connections. In order to conserve
energy and storage, the slave device may not retain these values, leaving the
responsibility of encrypting future communications to the master device, which
in this case is the smartphone.

3.2 Eavesdropping to extract Cryptographic Keys

The attacker, who may be a malicious merchant or an eavesdropper, can ex-
tract the cryptographic keys by capturing the pairing session between the mPoS
terminal and the merchant’s mobile phone. These keys are then used to carry
out various attacks. Malicious merchants can capture their phone’s pairing ses-
sion with their terminal during the initial BLE communication setup to obtain
the cryptographic keys. These keys can then be utilized to access future trans-
action data exchanged between the phone and the terminal. An eavesdropper

8 Mehr Nezhad et al.

can also sniff the established BLE communication to compromise the encryp-
tion. As demonstrated in [24], the attacker can exploit the vulnerability of the
BLE communication by jamming the connection, which forces the master and
slave to reconnect and establish a new pairing session. During this process, the
eavesdropper can inject appropriate control packets to initiate a key renegotia-
tion to obtain the keys. Our proposed model takes advantage of the vulnerability
present in the BLE communication between the merchant’s phone and the mPoS
terminal without requiring physical access to the mPoS terminal.

Eavesdropping: There are two primary methods for eavesdropping on BLE
traffic: using the HCI Snoop Log on the merchant’s mobile phone and using over-
the-air Bluetooth sniffers. The HCI Snoop Log approach involves capturing and
analyzing the HCI data packets on the merchant’s Android phone, which can
provide detailed information about the BLE communication between the phone
and other devices. The over-the-air Bluetooth sniffers, on the other hand, capture
BLE communication in the air by using specialized hardware and software. This
approach is useful for monitoring and analyzing the Bluetooth traffic between
multiple devices over a larger area. Both of these approaches have their own
advantages and disadvantages and it depends on the specific requirements of the
task and the environment in which it is being performed.

The utilization of HCI snoop logs, which requires the Developers Options
setting to be enabled on the Android phone, offers several advantages. Firstly,
the HCI snoop log is immune to missing packets during the capture process,
which is a prevalent issue with over-the-air Bluetooth sniffers. Secondly, as the
HCI protocol is situated above the Link Layer (LL) in the Bluetooth protocol
stack, the contents of all packets are already decrypted by the LL. This results
in a more straightforward analysis of the packets, as they are not impacted by
the encryption performed by the LL. However, it has a limitation for some of
the mPoS terminals, such as Square [27], that is equipped with the ability to
recognize whether Developer Options are enabled on the smartphone, thereby
disabling any transactions during this period. As a result, over-the-air Bluetooth
sniffers would be a better choice for these mPoS terminals. We used the com-
bination of HCI Snoop Log and Bluefruit BLE sniffer [1] to eavesdrop on the
pairing session of the mPoS terminal’s BLE communication with an Android
phone.

We used Pixel6 as our phone and tested SumUp Air and Square mPoS ter-
minals to capture their pairing session with the phone. The pairing session of
the Square [27] terminal is very similar to the SumUp [29] terminal. Hence, for
our proof-of-concept, we show the pairing session for a SumUp terminal in Fig.
2, with detailed Pairing Request and Pairing Response shown in Table 1.

Extracting Cryptographic Keys: The pairing request, as depicted in
Fig. 2, is initiated by the smartphone and details the desired parameters for
the BLE connection. This includes the type of pairing, the I/O capabilities of
both devices (the keyboard and display), the request for bonding for future con-
nections, and the demand for a secure connection with MITM protection. The
Max Encryption Size field of the request is set to 16, and the Initiator Key

Security Analysis of Mobile Point-of-Sale Terminals 9

mPoS
Reader
mPoS
Reader

Merchant
Phone

Merchant
Phone

Pairing Request*

Pairing Response**

Pairing Confirm
Opcode: Pairing Confirm (0x03)

Confirm Value: 62dccb4391e92e015788d5f0c1a30b6e

Pairing Confirm
Opcode: Pairing Confirm (0x03)

Confirm Value: e986ecd9c46116f6011d0fdb5094d5e1

Pairing Random
Opcode: Pairing Random (0x04)

Random Value: 175cd8c8c13eea7707764aec097c67f4

Pairing Random
Opcode: Pairing Random (0x04)

Random Value: 8ca4029f95e517217bc49378de63997a

Master Identification
Opcode: Master Identification (0x07)
Encrypted Diversifier (EDIV): 0x80b3
Random Value: a87692cec357f54f

Encryption Information
Opcode: Encryption Information (0x06)

Long Term Key: 81297920b7b9b8140d440c47b08c6828

Identity Information
Opcode: Identity Information (0x08)

Identity Resolving Key: 5eef6dbaefa3b9a87706a05035881e2b

Identity Address Information
Opcode: Identity Address Information (0x09)

Address Type: Random (0x01)
BD_ADDR: d8:90:6c:23:51:f5 (d8:90:6c:23:51:f5)

Encryption Information
Opcode: Encryption Information (0x06)

Long Term Key: 5e0060f815c4eff8ef5da019fc8bed4b

Master Identification
Opcode: Master Identification (0x07)
Encrypted Diversifier (EDIV): 0xe006
Random Value: 4235c246a77ee21b

Identity Information
Opcode: Identity Information (0x08)

Identity Resolving Key: 16a90b1b4360eb4e020d0a4885cfb6fe

Identity Address Information
Opcode: Identity Address Information (0x09)

Address Type: Public (0x00)
BD_ADDR: 0c:c4:13:15:41:a6 (0c:c4:13:15:41:a6)

Fig. 2. Pairing Session- SumUp Card Reader

10 Mehr Nezhad et al.

Distribution and Responder Key Distribution fields specify that all of the en-
cryption keys (LTK, Identity Key (IRK), Signature Key (CSRK), and Link Key)
should be distributed to both devices. This ensures that both the smartphone
and the mPoS terminal have all of the necessary keys for secure and encrypted
communication.

Table 1. Pairing Request and Response- SumUp Card Reader

Field Pairing
Request
Value

Pairing Request
Meaning

Pairing
Response
Value

Pairing Response
Meaning

Code 0x01 Pairing Request 0x02 Pairing Response
I/O 0x04 Keyboard/Display 0x03 No I/O
OOB 0x00 NOT Present 0x00 NOT Present

Authentication Request

Bonding 0x1 Bonding 0x1 Bonding
MITM 1 True 0 False
SC 1 True 0 False
KP 0 False 0 False
Reserved 0x0 - 0x0 -
Max Enc. 16 Max Enc. Size 16 Max Enc. Size

Initiator Key Distribution

LTK 1 True 1 True
IRK 1 True 1 True
CSRK 1 True 0 False
Link Key 1 True 0 False
Reserved 0x0 - 0x0 -

Responder Key Distribution

LTK 1 True 1 True
IRK 1 True 1 True
CSRK 1 True 0 False
Link Key 1 True 0 False
Reserved 0x0 - 0x0 -

However, the response from the SumUp card reader to the pairing request
is surprising in that it indicates a lack of I/O capabilities despite having both a
keyboard and a display. Additionally, the respondent refuses to establish a se-
cure connection and protection against MITM attacks. As a result, LE Legacy
pairing will be used. The Initiator Key Distribution and Responder Key Distri-
bution fields in the response specify that only the Encryption Key (LTK) and
Id Key (IRK) will be shared between the devices, whereas the Signature Key
(CSRK) and Link Key will not be exchanged.

It is determined from the mapping of I/O capabilities to the key generation
method in the BLE specification (as specified in Table 2.8 of the Bluetooth Core
Specification v5.3 [26]) that, given the initiator has a keyboard and display and

Security Analysis of Mobile Point-of-Sale Terminals 11

the responder claims to have no input or output capabilities, the Just Works-
Unauthenticated key generation method will be employed. The utilization of
the Just Works pairing method results in the generation of the TK and STK.
The Just Works STK generation method provides no protection against eaves-
dropping or MITM attacks during the pairing process. Both devices set the TK
value utilized in the authentication mechanism to zero, leading to a lack of
protection against such attacks. The STK is not explicitly shared between the
devices, rather the participating devices share random values and calculate the
STK individually.

Due to the lack of utilization of the mPoS terminal’s keyboard and display
for a secure pairing method, the attacker can have access to the distributed keys
in phase 3, as shown in Fig. 2. The access to security keys used in a LE Legacy
pairing session by an attacker grants them the ability to eavesdrop on the data
being transmitted between the two devices. This is because these keys are used to
encrypt and secure communication, and having access to them would enable the
attacker to decrypt the data and have access to it. For instance, if the attacker
possesses the LTK, they could use it to encrypt the data exchanged between the
two devices, allowing them to intercept and manipulate the data. Crackle [23] is
one of the tools that can be used for this purpose. With the “Decrypt with LTK”
feature, crackle uses a user-supplied LTK to decrypt communications between a
master and slave.

Not utilizing the I/O capabilities for secure pairing is not common practice
across all mPoS terminals. The examination of the SumUp Air mPoS terminal
in this study revealed that it does not employ such mechanisms, in contrast
to other terminals like iZettle, which do incorporate secure pairing techniques.
Specifically, iZettle’s method involves the presentation of a numerical value on
the terminal’s display, which the user must then confirm as matching the corre-
sponding value on their paired device [13].

4 Network Security

The implementation of a mobile application on a smartphone connected to an
mPoS terminal requires interaction with servers of the payment service providers
through the Internet. In this section, we investigate the analysis of decrypted
Hypertext Transfer Protocol Secure (HTTPS) packets and the feasibility of mod-
ifying these packets. The subsequent sections present the specifics of our inter-
cepted network traffic, followed by a demonstration of a tampering attack on
this traffic, serving as proof of concept for MITM attacks.

4.1 HTTPS Interception

The merchant’s mobile phone uses HTTPS packets to communicate with pay-
ment providers over the Internet. This protocol employs Transport Layer Secu-
rity (TLS) to encrypt network traffic. In order to gain access to the contents
of these packets, a MITM attack is employed using a proxy server. The proxy

12 Mehr Nezhad et al.

server is able to intercept and decrypt the HTTPS packets, as the smartphone
establishes a secure connection with it, believing it to be the intended recipient
of the network traffic. The proxy server subsequently forwards the packets to
the payment server. Details of communication over the course of a transaction
for a SumUp terminal can be seen in Fig. 3. As shown in this figure, a transac-
tion begins with a Checkout Request from the merchant’s mobile phone, which
requests the appropriate resources to display in the application during the trans-
action from the payment server. Other information in this request includes the
currency, transaction amount, location and mPoS terminal device information,
which is sent to the SumUp device for logging and handling purposes. For ex-
ample, the transaction will fail and the sequence will end if the battery level of
the terminal is too low. Continuing from the Checkout Request is a Transaction
Request, where the beginning of the transaction is requested from a payment
endpoint within SumUp’s payment server. This is also the point at which the
merchant’s mobile phone begins to act as a proxy for communications between
the terminal and payment server, which exchange messages without the SumUp
application’s influence. After this response to the transaction request, we then
see four or five request-response pairs to and from the payment endpoint, de-
pending on the payment method (chip-and-PIN or contactless). After successful
payment, the transaction ends with a response from the payment endpoint and a
value stop. The SumUp application processes this action to end the transaction
and reject any other responses from the terminal. The transaction officially ends
when the merchant phone sends two messages to the terminal on behalf of the
payment server, signalling a successful closure of the transaction.

In our attack scenario, the Mitmproxy tool [19] is utilized as the proxy server
on a desktop computer to perform a MITM attack between the SumUp applica-
tion and the payment server. This tool is designed as an interactive, SSL/TLS-
capable intercepting proxy for HTTP/1, HTTP/2, and web sockets, as it allows
the attacker to monitor, capture and alter connections in real time. On the smart-
phone, a manual proxy configuration is set up, with the local IPv4 address being
used as the server address and 8080 as the port. The Mitmproxy’s Certificate
Authority (CA) is then installed on the smartphone.

When an application establishes an HTTPS connection, it verifies the le-
gitimacy of the server’s certificate through comparison with the trusted system
certificate authorities listed in the Android operating system. The list of CA
is fixed and secure, but some applications may choose to implement their own
custom certificate validation process, known as “Certificate Pinning”. We bypass
this process by using the Apk-mitm [20] tool. This is accomplished through the
application of a series of steps, including 1) decoding the APK file with Apk-
tool (more details in Section 5), 2) replacing the application’s network security
configuration to allow user-added certificates, 3) modifying the source code to
disable various certificate pinning implementations, fourth, encoding the patched
APK file with Apktool, and finally, 4) signing the patched APK file with Uber-
apk-signer [21]. The application of the Apk-mitm to the extracted SumUp APK
file results in the creation of a modified version of the app. This modified app

Security Analysis of Mobile Point-of-Sale Terminals 13

mPoS
Terminal

mPoS
Terminal

Merchant
Phone

Merchant
Phone

Payment
Provider
Server

Payment
Provider
Server

(1) Response from Terminal

getDeviceInfo() Request

Checkout Request

(rcpActionCheckout)

Checkout Response

 (rcpEventCheckout)

Start Transaction Request

 (rcpActionDeviceInfo)

Start Transaction Response

(rcpEventEMVServerResponse)

Response from Terminal

Request from Payment Server

Send Reader Response Request

 (rcpActionReaderResponse)

Send Reader Response Response

(rcpEventEMVServerResponse)

Request from Payment Server

Customer PaymentCustomer Payment

Response from Terminal

Send Reader Response Request

(rcpActionReaderResponse)

Send Reader Response Response

(rcpEventEMVServerResponse)

Request from Payment Server

Loop

Fig. 3. Sequence Diagram of the Exchanged Messages

14 Mehr Nezhad et al.

now trusts the Mitmproxy certificate, which is added to Android’s built-in list
of trusted system certificate authorities, allowing for the interception of traffic
sent to SumUp’s payment provider servers.

4.2 Tampering Attack

In this proof-of-concept demonstration, we present a tampering attack that high-
lights the feasibility of data modification. In this scenario, a MITM attack is
utilized to intercept and manipulate the communication transmitted during a
transaction.

By tampering with the messages sent by the payment server for the termi-
nal, we can change the behaviour of the terminal for fraudulent purposes. The
messages from the payment server are commands that tell the terminal what
to do next to proceed with a transaction. Aside from the messages that we see
in network traffic analysis, there are two commands exposed in the application
source code, as can be seen in Table 2. The PINPLUS SHOW DEFAULT MES-
SAGE command is used to show a default message of “SumUp PIN+” on the
terminal’s display. If we decode the command into hexadecimal, the command
contains this string in plaintext ASCII. This means that we can insert arbitrary
ASCII into this command to display arbitrary text on the terminal’s display.

Table 2. Exposed Commands in SumUp Application Source Code

Command Name Base64-Encoded Command

PINPLUS DEVICE
POWER OFF COM-
MAND

AAIBAQ4=

PINPLUS SHOW DE-
FAULT MESSAGE

ABUBAQsAAAABAAtTdW1VcCBQSU4rAP8A

However, there are limitations to this attack. Protected messages cannot be
altered, as the terminal will reject them, resulting in an error message. Addi-
tionally, unprotected messages are not accepted by the terminal during protected
message exchange. This presents a problem as modification and sending of com-
mands are desired during a transaction, which largely involves protected message
exchanges. The “leave protected session” command, which is sent in response to
the payment server during a protected message exchange, provides a solution.
Tracing its usage in the source code as shown in Fig. 4, reveals its sole purpose is
to end a protected message exchange in case of errors. This allows us to propose
an attack on the SumUp terminal by exploiting the ability to exit a protected
message exchange at any point during a transaction.

The ability to leave a protected message exchange at any point in a trans-
action allows us to propose an attack on the SumUp terminal. At the end of a
normal transaction, the payment server will send two commands to the terminal
to inform it that the transaction was successful. In our attack, we replace these

Security Analysis of Mobile Point-of-Sale Terminals 15

@Override
public void onError(i.t.n.a.c.b bar, @Nullable List<j> list, h

hVar) {
String str = "onError event received. error code: " + hVar;
if ((hVar == i.t.n.a.d.b.NOT_ALLOWED ||
hVar == i.t.n.a.d.b. INVALID_SEQUENCE_NUMBER_IN_PROTECTED

_MODE && ReaderCoreManager
ReaderCoreManager.this.leave_Protected_Mode();
}

else {
WReaderModuleCoreState.getBus().m(new

CardReaderErrorEvent(bar, ReaderCoreManager.this.
isReadyToTransmit(), list));

}
}

Fig. 4. Usage of Leaving a Protected Session in the SumUp’s Application Source Code

two commands to trick the terminal into displaying that the payment method
was declined. First, we use the “leave protected session” command sent earlier
in the transaction to exit the protected message exchange, allowing us to send
an unprotected command. This is followed by the PINPLUS SHOW DEFAULT
MESSAGE command that has been modified to display the text “Declined” on
the terminal’s display. The result of this attack is a successful transaction with
the terminal displaying that the transaction was not successful. This is shown
in Fig. 5. This vulnerability could be part of a social engineering attack and
multiple transactions could be carried out.

5 Software Security

The security of mPoS terminals can be analyzed through the reverse engineering
of their code. Reverse engineering refers to the systematic examination of the
code of a software program to comprehend its functioning, identify its vulner-
abilities, and potentially modify it. In this section, we demonstrate the viabil-
ity of reverse engineering the code of mPoS terminals mobile applications. In
particular, we employ an Android smartphone to analyze the source code and
demonstrate the capability of modifying the behaviour of the mPoS terminal
through the alteration of the mobile application code. In our case study, we use
the SumUp Air mPoS terminal and the Android mobile application. To this end,
we outline the procedures involved in the reverse engineering process and present
the results of our case study. Our findings underscore the significance of adopt-
ing secure code development and deployment practices for mPoS technology to
prevent potential security threats.

16 Mehr Nezhad et al.

Fig. 5. Tampering Attack on Transaction Messages

5.1 Reverse Engineering

The Android applications are primarily written in Java and are stored as Android
packages in the Android Package Kit (APK) file format, which is essentially zip
files that encompass resources and assembled Java code. The process of reverse
engineering the APK files on Android phones includes several steps: decompil-
ing, making modifications, re-compiling, and signing the APK to be used on
Android phones. We use the APK of the SumUp application and decompiled
using two methods, Apktool [20] and a standard Java decompiler [7]. The first
tool produces Smali code, while the second produces Java code. We use two
different tools as they are complementary. Smali code is more difficult to read,
therefore we use Java code to understand the application code and identify the
vulnerable parts that can be exploited, apply the changes in the relevant part of
the Smali code and use it to rebuild and sign the code. To do this, we reverse the
decompiling process by rebuilding and signing the APK. The APK was rebuilt
using Apk-mitm [25], which uses Apktool to encode the patched APK file and
the Uber-apk-signer [21] tool to sign and verify the APK.

5.2 Software Modification Attack

As outlined in Section 4.1, modification of the code can circumvent the Certifi-
cate Pinning mechanism, thereby allowing the attacker to execute MITM and
tampering attacks on the communication between the merchant’s mobile phone
and the server of the service provider. Here, we demonstrate another software

Security Analysis of Mobile Point-of-Sale Terminals 17

modification attack, showcasing how this vulnerability can be exploited to neu-
tralize an additional security feature: beep sound.

The process of performing a contactless payment on an mPoS terminal is
often accompanied by an audible beep sound as a security feature, which alerts
the user to the transaction taking place. This serves as a notification to the
user regarding the ongoing transaction and is essential in the prevention of relay
attacks. However, a study of the SumUp Air card reader application showed that
it is possible to compromise this security feature through modification of the app
software.

The analysis of the code revealed that the volume of the beep sound is con-
trolled by the PlaySoundEffect method within the AudioManagers class. By
modifying this method, it is possible to completely control the sound and disable
this security feature. In addition, the keyboard input sound made by the SumUp
app can also be muted through modification of the code. This involved remov-
ing all function declarations and calls related to the PlaySoundEffect method
from the code base. The recompilation and installation of the modified applica-
tion showed that the sound is no longer played when keyboard inputs are used
during the charge creation process. This highlights the vulnerability of the ap-
plication to modification and raises concerns about the potential for malicious
actors to manipulate the app and compromise the security protocols designed to
protect customers. This finding underscores the importance of employing more
secure solutions to ensure the safety of user transactions. Relying solely on an
audible beep sound as a security feature is insufficient and poses a significant
risk to users.

6 Discussion

6.1 Ethical Disclosures

The present study was performed within a controlled setting. The authors pur-
chased commercially available mPoS terminals and used their own bank accounts
to demonstrate the proof-of-concept attacks. Our research primarily focused on
the SumUp Air mPoS terminal. We have shared our findings with the vendor for
their review and feedback. We are currently in discussions with them to further
address these issues.

6.2 Mitigating the Vulnerabilities

During our study, we have identified possible solutions for the security issues of
mPoS terminals. These solutions include secure pairing methods for encryption
security, code obscuring [32], anti-tampering (AT) [6], and abuse detection [2]
techniques for traffic security and application code protection. In future research,
we plan to study these potential solutions further and evaluate the feasibility and
effectiveness of these countermeasures in addressing the identified security issues.

18 Mehr Nezhad et al.

6.3 Tap-to-Phone Technology

The next generation of acceptance terminals, like Tap-to-Phone [31] (also known
as Tap-to-Pay [16]), offers potential solutions to the security risks and vulnerabil-
ities associated with mPoS terminals. This technology utilizes Near Field Com-
munication (NFC), allowing merchants to accept contactless payments through
their mobile devices. On the other hand, contactless payments have seen a sig-
nificant increase in popularity in the UK, accounting for over a quarter of all
payments made, with mobile payments playing a significant role in this growth.
The trend towards contactless payment methods continues to grow, as the spend-
ing limit in the UK has increased progressively over the years, reaching £100 in
2021 [12]. Tap-to-Phone technology provides a more convenient and cost-effective
solution to accepting these increasingly contactless payments without the need
for a dedicated mPoS terminal. However, new systems are still susceptible to
security risks, which require further research.

7 Conclusion

This paper analyzes the security implications of mobile Point-of-Sale (mPoS)
terminals and their relationship with merchant’s mobile phones as a key compo-
nent of the mPoS system. The security aspects of communication between the
(merchant’s) mobile phone and the mPoS terminal, the mobile phone and the
payment server, and also the security risks in the mobile phone application itself
are examined. An eavesdropping attack is performed to reveal cryptographic keys
in the BLE communication, a man-in-the-middle (MITM) attack is performed
to tamper with mPoS terminal messages, and the mobile phone application is
reverse engineered to alter the security features of the mPoS terminals controlled
by the mobile phone.

Future research directions for this study include examining other mPoS ter-
minals for their security vulnerabilities and investigating potential solutions to
the attacks and vulnerabilities identified in this study. These steps will contribute
to a more comprehensive understanding of the security landscape of mPoS ter-
minals and aid in the development of effective security measures to mitigate the
risks.

Acknowledgements

The third author is supported by Royal Society (ICA\R1\180226) and EPSRC
(EP/T014784/1).

References

1. Adafruit. Adafruit bluefruit ble sniffer. Available at https://www.adafruit.
com/product/2269. Accessed 10 May 2022.

https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269

Security Analysis of Mobile Point-of-Sale Terminals 19

2. Android. Safetynet attestation api. Available at https://developer.
android.com/training/safetynet/attestation. Accessed 12 March 2023.

3. D. Basin, R. Sasse, and J. Toro-Pozo. The emv standard: Break, fix, verify. In
2021 2021 IEEE Symposium on Security and Privacy (SP), pages 1766–1781, Los
Alamitos, CA, USA, may 2021. IEEE Computer Society.

4. David Basin, Ralf Sasse, and Jorge Toro-Pozo. Card brand mixup attack: Bypass-
ing the PIN in non-visa cards by using them for visa transactions. In 30th USENIX
Security Symposium (USENIX Security 21), pages 179–194. USENIX Association,
August 2021.

5. David Basin, Patrick Schaller, and Jorge Toro-Pozo. Inducing authentication fail-
ures to bypass credit card pins. 32rd USENIX Security Symposium (USENIX
Security, 2023.

6. Stefano Berlato and Mariano Ceccato. A large-scale study on the adoption of anti-
debugging and anti-tampering protections in android apps. Journal of Information
Security and Applications, 52:102463, 2020.

7. Java Decompiler. Java online decompiler. Available at http://www.
javadecompilers.com/apk. Accessed 13 May 2022.

8. EMVCo. Worldwide emv deployment statistics. Available at https://www.
emvco.com/about-us/worldwide-emv-deployment-statistics/. Ac-
cessed 11 January 2023.

9. Forbes. What is pos and how does it work? Available at https://www.forbes.
com/advisor/in/banking/what-is-pos-and-how-does-it-work/. Ac-
cessed 11 January 2023.

10. WesLee Frisby, Benjamin Moench, Benjamin Recht, and Thomas Ristenpart. Se-
curity analysis of smartphone point-of-sale systems. In WOOT, pages 22–33, 2012.

11. Leigh-Anne Galloway and Tim Yunusov. For the love of money: Finding and
exploiting vulnerabilities in mobile point of sales systems. Available at https:
//leigh-annegalloway.com/for-the-love-of-money/. Accessed 11 Jan-
uary 2023.

12. United Kingdom Government. 2021 budget plan. Available at https://www.
gov.uk/government/publications/budget-2021-documents. Accessed
01 June 2021.

13. iZettle. In-app pairing guide. Available at https://developer.zettle.
com/docs/ios-sdk/user-guides/manage-in-app-pairing. Accessed 12
March 2023.

14. iZettle. izettle card reader. Available at https://www.izettle.com/. Accessed
11 January 2023.

15. MWR Labs. Mission mpossible: Mobile card payment security. Available at
https://www.youtube.com/watch?v=iwOP1hoVJEE. Accessed 11 January
2023.

16. Mastercard. Mastercard tap to pay on iphone. Available at https://partner.
visa.com/site/programs/visa-ready/tap-to-phone.html. Accessed 11
January 2023.

17. Mahshid Mehr Nezhad and Feng Hao. Opay: an orientation-based contactless pay-
ment solution against passive attacks. In Annual Computer Security Applications
Conference, pages 375–384, 2021.

18. Alexandrea Mellen, John Moore, and Artem Losev. Mobile point of scam: Attack-
ing the square reader. Black Hat USA, 2015.

19. Mitmproxy. How mitmproxy works. Available at https://docs.mitmproxy.
org/stable/concepts-howmitmproxyworks/. Accessed 11 January 2023.

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation
http://www.javadecompilers.com/apk
http://www.javadecompilers.com/apk
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://www.forbes.com/advisor/in/banking/what-is-pos-and-how-does-it-work/
https://www.forbes.com/advisor/in/banking/what-is-pos-and-how-does-it-work/
https://leigh-annegalloway.com/for-the-love-of-money/
https://leigh-annegalloway.com/for-the-love-of-money/
https://www.gov.uk/government/publications/budget-2021-documents
https://www.gov.uk/government/publications/budget-2021-documents
https://developer.zettle.com/docs/ios-sdk/user-guides/manage-in-app-pairing
https://developer.zettle.com/docs/ios-sdk/user-guides/manage-in-app-pairing
https://www.izettle.com/
https://www.youtube.com/watch?v=iwOP1hoVJEE
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/

20 Mehr Nezhad et al.

20. Patrickfav. Apk tool- a tool for reverse engineering android apk files. Available at
https://ibotpeaches.github.io/Apktool/. Accessed 13 May 2022.

21. Patrickfav. Uber apk signer. Available at https://github.com/patrickfav/
uber-apk-signer. Accessed 13 May 2022.

22. Andreea-Ina Radu, Tom Chothia, Christopher J.P. Newton, Ioana Boureanu, and
Liqun Chen. Practical emv relay protection. In 2022 IEEE Symposium on Security
and Privacy (SP), pages 1737–1756, 2022.

23. Mike Ryan. Crackle. Available at https://github.com/mikeryan/crackle.
Accessed 24 May 2022.

24. Mike Ryan. Bluetooth: With low energy comes low security. In 7th {USENIX}
Workshop on Offensive Technologies ({WOOT} 13), 2013.

25. shroudedcode. apk-mitm. Available at https://github.com/shroudedcode/
apk-mitm. Accessed 13 May 2022.

26. Bluetooth SIG. Bluetooth core specification, v5.2. Available at https://www.
bluetooth.com/specifications/specs/core-specification-5-2/.
Accessed 9 May 2022.

27. Square. Square card reader. Available at https://squareup.com/gb/en. Ac-
cessed 11 January 2023.

28. Square. What is a card-not-present (cnp) transaction and why does it
cost more. Available at https://squareup.com/gb/en/townsquare/
what-is-a-card-not-present-transaction. Accessed 11 January 2023.

29. Sumup. Sumup card reader. Available at https://www.sumup.com/en-gb/.
Accessed 11 January 2023.

30. Miura Systems. Miura card reader. Available at https://www.miurasystems.
com/. Accessed 11 January 2023.

31. Visa. Visa tap to phone. Available at https://partner.visa.com/site/
programs/visa-ready/tap-to-phone.html. Accessed 11 January 2023.

32. Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick
Traynor, and Sascha Fahl. A large scale investigation of obfuscation use in google
play. Proceedings of the 34th annual computer security applications conference,
pages 222–235, 2018.

8 Appendix

Table 3: List of Acronyms

Acronym Stands For Description
APK Android Package

Kit
The file format for applications used on the
Android operating system (OS).

AT Anti Tampering A security approach that hampers or prevents the
reverse engineering or modification of the software
or application.

Continued on next page

https://ibotpeaches.github.io/Apktool/
https://github.com/patrickfav/uber-apk-signer
https://github.com/patrickfav/uber-apk-signer
https://github.com/mikeryan/crackle
https://github.com/shroudedcode/apk-mitm
https://github.com/shroudedcode/apk-mitm
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://squareup.com/gb/en
https://squareup.com/gb/en/townsquare/what-is-a-card-not-present-transaction
https://squareup.com/gb/en/townsquare/what-is-a-card-not-present-transaction
https://www.sumup.com/en-gb/
https://www.miurasystems.com/
https://www.miurasystems.com/
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html

Security Analysis of Mobile Point-of-Sale Terminals 21

Table 3 – continued from previous page
Acronym Stands For Description
AMSR Audio-jack

Magnetic Stripe
Reader

A device that plugs into the audio jack of a
smartphone or tablet and reads the magnetic stripe
on a credit or debit card for mobile payment
processing.

BLE Bluetooth Low
Energy

A power-efficient variant of the classic Bluetooth
technology, used for connecting and exchanging
data between devices over short distances.

CA Certificate
Authority

An entity that stores, signs, and issues digital
certificates.

CNP Card Not Present A payment term for transactions where the
cardholder does not physically present the card to
the merchant (like online purchases).

CP Card Present A payment term for transactions where the card is
physically swiped, inserted, or tapped at a payment
terminal.

CSRK Signature Key Encryption Key used in BLE Protocol.
ECDH Elliptic Curve

Diffie Hellman
A key agreement protocol that allows two parties,
each having an elliptic-curve public–private key
pair, to establish a shared secret over an insecure
channel.

EDIV Encrypted
Diversifier

A 16-bit stored value used to identify the LTK
distributed during LE legacy pairing.

F2F Face to Face A payment term for transactions where the
payment device is physically present.

HCI Host Controller
Interface

A standardized communication interface in BLE
that provides a layer for transmitting and receiving
data between the host and the controller.

HTTP Hypertext Transfer
Protocol

The secure version of HTTP.

HTTPS Hypertext Transfer
Protocol Secure

A protocol used for communication between a web
server and a client.

I/O Input/Output The capabilities of the devices to enter (input) or
display (output) information.

IRK Identity Key Encryption Key used in BLE Protocol.
KP Key Press The notifications sent between devices to indicate

when a key on one device is pressed during the
passkey entry pairing method.

LE Legacy Low Energy
Legacy

A method of pairing devices in Bluetooth Low
Energy (BLE) prior to the introduction of Secure
Connections, which provides a lower level of
security compared to Secure Connections.

Continued on next page

22 Mehr Nezhad et al.

Table 3 – continued from previous page
Acronym Stands For Description
LL Link Layer A layer in Bluetooth protocol stack responsible for

managing the connection and communication
between Bluetooth devices.

LTK Long Term Key Encryption Key used in BLE Protocol.
MITM Man-in-the-middle A type of cyber attack where a malicious actor

intercepts and possibly alters the communication
between two parties without their knowledge.

mPoS Mobile
Point-of-Sale

Similar to PoS, but smaller compact PoS terminals
that are portable and are usually managed by a
smartphone (merchant’s phone).

NFC Near Field
Communication

A wireless communication technology allowing data
exchange between devices in close proximity.

OOB Out-of-band A method for sharing pairing information using an
external channel, separate from the standard BLE
channel.

PIN Personal
Identification
Number

A numerical code used in payment cards providing
a layer of security by verifying the user’s identity.

PoS Point-of-Sale A device used by merchants to accept card
payments.

SMP Security Manager
Protocol

The protocol responsible for pairing and key
distribution between devices.

SC Secure Connection A protocol that authenticates two Bluetooth devices
and derives a shared secret key between them.

STK Short Term Key Encryption Key used in BLE Protocol.
TK Temporary Key Encryption Key used in BLE Protocol.
TLS Transport Layer

Security
A cryptographic protocol that provides secure
communication between devices on Internet
communications.

	Security Analysis of Mobile Point-of-Sale Terminals

